装饰性镀铬故障分析:镀铬层呈乳白色
发布时间:2014/12/9 14:07:22 来源:禾川化学 字体:
禾川化学为了加强与广大客户的沟通,切实地解决企业因大型检测设备、研发经验的缺乏;所致研发进程缓慢,技术瓶颈无法突破的苦恼。禾川化学为企业提供成分分析,配方还原,工业问题诊断,新材料开发的一站式服务。
(1)可能原因:铁杂质过多
原因分析:镀铬液中Fe3+的含量在3g/L以下,对镀铬层无明显的影响,但其含量大于5g/L时,铬层光泽差,光亮镀铬层的阴极电流密度缩小,镀液的电阻增大,工作电流不稳定;当其含量大于l0g/L时,镀液颜色变深,呈棕褐色,镀层上出现黄色斑点。
铁杂质的来源:镀铁工件落入槽内、铁件深凹处未镀覆镀层部位的化学溶解以及铬阳极的溶解和化学材料的带入等。
处理方法一:稀释法把铁杂质含量高的镀铬液抽出计算量的部分,作为塑料电镀的粗化液或镀锌的钝化液,然后再补充部分新镀铬液,使铁杂质的含量降低至允许范围内。
处理方法二:阳离子交换法
a.将镀铬液稀释至Cr03<130g/L;
b.用732#强酸性阳离子交换树脂(或其他树脂)交换处理,除去Fe3+、Cr3+和其他阳离子;
c.蒸发浓缩处理液,至Cr03含量至工艺范围内;
d.向处理液中加入0.5mL/L 98%的酒精,再电解一段时间,产生适量的三价铬,即可电镀
处理方法三:隔膜电解法 将含有金属杂质离子的镀铬液注入阴极室中进行电解,Cr6+还原成Cr3+,同时镀液的pH值升高,金属杂质形成氢氧化物沉淀,再经过滤后,将有害的金属杂质除去。含Cr3+的镀液通过电渗析进入阳极室外,再进行电解,Cr3+在阳极被氧化成Cr6+,与此同时,pH值降低,这样可使镀铬液再生。值得注意的是,此法隔膜的质量是关键,为了延长隔膜的使用寿命,镀铬液需经稀释至100~150g。
处理方法四:CS型镀铬净化剂法 此法可除去异金属杂质,经济、方便、迅速。
(2)可能原因:三价铬离子过多
原因分析:镀铬液中的三价铬离子是铬电沉积过程中Cr6+在阴极上还原产生的,与此同时,Cr3+在阳极上又将重新被氧化成Cr6+,所以,Cr6+在镀铬液中的含量在一定条件下可达到平衡,平衡时的浓度取决于阴、阳极面积之比,一般为SA:Sk=2:1。Cr3+是阴极胶体膜骨架,是阴极胶体膜的主要成分,只有当镀铬液中含有一定的Cr3+时,铬的沉积过程才能正常进行。普通镀铬液中三价铬的最佳含量取决于镀液的组成、工艺条件及杂质的含量,一般为2~4g/L(有资料报道:Cr3+含量大约为铬酸含量的l%~2%),不允许超过8g/L。当Cr3+过低时,相当于SO42-含量偏高时出现的现象,使阴极膜不连续,镀液的分散能力差,而且硬度低、光泽性差、电流效率也较低,而且只有在较高的电流密度下才产生铬的沉积。当Cr3+过高时,相当于SO42-含量不足,阴极膜增厚,不仅显著降低镀液的导电性,使槽电压升高,而且镀铬层的光亮度范围缩小,工件的尖端或边缘会出现烧焦,如果阴极电流密度较低时,会使工件深凹处镀不上铬,还会引起镀层产生暗色、脆性及斑点等。严重时,只能产生粗糙、灰色镀层。
新配制镀液Cr3+的产生方法
①采用大面积阴极电解。电解的条件是阴极面积必须大于阳极面积,镀液中必须含有足够量的硫酸。在电解时,阴极反应式为
Cr2072-+14H++6e一→2Cr3++7H2O
即阴极上发生Cr6+的还原,此反应若无硫酸存在,反应即刻停止。阳极反应式为
2Cr3++7H20一6e一→Cr2072-+14H+
即阳极上发生Cr6+的氧化。在阴极面积大于阳极面积的情况下,六价铬的还原趋势大于三价铬的氧化趋势,总的结果使三价铬含量升高。相反,若在阴极面积小于阳极面积的情况下电解,则使三价铬的含量逐渐降低。
②用还原剂将Cr6+还原产生三价铬。还原六价铬的还原剂有酒精、草酸和冰糖等,较为常用的是酒精(98%),用量为0.5ml/L。在加入酒精时,由于反应放热,应边搅拌边加入,否则反应剧烈,使铬液溅出。加入酒精后,稍作电解,即可投入使用。
③添加部分旧的镀铬液。在镀铬过程中,必须防止镀铬液的Cr3+升高,除了要有足够大的阳极面积外,还要防止铜、铁工件落人和有机物的带入,因为这些物质都能促使六价铬的还原,使三价铬含量增加 降低三价铬离子常用的方法有强氧化法、离子交换法、电渗析法和稀释法,但最常用的是电解法。
处理方法:电解法在阳极面积大于阴极面积10~30倍、镀液温度为50~60℃、阴极电流密度为1.8~2.0A/dm2的条件下进行电解,处理时间视Cr3+的含量而定,一般在上述情况下.通电处理1h,约氧化三价铬0.3g/L左右。
(3)可能原因:温度过高
原因分析:在镀铬过程中,阴极电流密度与温度之间存在着相互依赖的关系。在同一溶液中镀铬时,通过调整温度和电流密度,并控制在适当的范围内,可以获得光亮铬、硬铬和乳白铬三种不同性能的镀铬层。在低温高电流密度区,铬镀层呈灰暗色或烧焦,这种镀层具有网状裂纹、硬度大、脆性大;高温低电流密度区,铬层呈乳白色,这种组织细致、气孔少、无裂纹,防护性能较好,但硬度低,耐磨性差;中温中电流密度区或两者配合较好时,可获得光亮镀铬层,这种铬层硬度较高,有细而稠密的网状裂纹。若配合不当,对镀铬溶液的阴极电流效率、分散能力、镀层的硬度和光亮度都有很大的影响。如镀液温度高达70℃左右,那么即使升高电流密度,也难以得到光亮的镀层。生产上一般采用中等温度(45~60℃)与中等电流密度(30~45A/dm2)以得到光亮度和硬度较高的铬镀层。尽管镀取光亮镀层的工艺条件相当宽,但考虑到镀铬液的分散能力特别差,在形状复杂的零件镀装饰铬或硬铬时,要在不同部位都镀上厚度均匀的铬层,必须严格控制温度和电流密度。当镀铬工艺条件确定后,镀液的温度变化最好控制在±2℃以内。
处理方法:降低镀液温度至标准值并合理设定电流密度。
(4)可能原因:电流密度过小
处理方法:准确测量受镀工件面积,合理设定电流值。
相关技术
- [应用工艺] 2015年04月13日 氰化镀锡青铜故障及其处
- [应用工艺] 2015年03月30日 氰化镀银故障分析:镀层
- [应用工艺] 2015年03月27日 氰化镀银故障分析:镀层
- [应用工艺] 2015年03月17日 氰化镀银故障分析:低电
- [应用工艺] 2015年03月16日 氰化镀银故障分析:阳极
- [应用工艺] 2015年03月06日 氰化镀银故障分析:铜和